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The flow into an expanding spherical vortex 
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A kinematic model of the flow around and into a buoyant ' thermal ' is discussed 
in some detail, and compared with existing laboratory observations. The basic 
assumption is that the flow is instantaneously the same as it is for Hill's 
spherical vortex of fixed size moving through a frictionless fluid. The equations 
describing the motion of a particle have been modified to allow for an expansion 
in radius proportional to the distance travelled, and a numerical integration 
of these time-dependent equations has been performed in order to find particle 
trajectories, with respect to both the instantaneous boundary of the spherical 
vortex and axes at  rest. It is shown that for the expanding vortex there is no 
quantity corresponding to the 'drift distance ' or the total forward displacement 
of particles in the flow round a sphere of constant size; particles in the wake of 
an expanding vortex have a finite forward velocity at  large times. 

The model gives very close agreement with the observed behaviour of particles 
entering a turbulent buoyant thermal, except that in the laboratory measure- 
ments the region containing the turbulent fluid resembles an oblate spheroid 
rather than a sphere. The thin mixing layer over the front and the addition of 
fluid over a broad region at  the rear of a thermal, as well as the detailed particle 
trajectories, can all be explained as consequences of this mean velocity 
distribution. 

1. Introduction 
When an isolated element of buoyant fluid is released into a uniform environ- 

ment which is at rest, it  is observed that the buoyant region becomes turbulent, 
and spreads out as it advances under the action of gravity, due to the incorpora- 
tion of fluid from the environment. The increase in radius is linear with distance, 
with a half-angle of spread of about 15". A linear spread can be predicted using 
dimensional arguments (Scorer 1957) or it can alternatively be regarded as a 
necessary consequence of the increase of momentum of the moving region which 
is produced by the action of buoyancy (Turner 1957). 

The detailed nature of the mean motion in and around such an element has 
been studied experimentally by Woodward (1959) and more recently by 
Saunders (1962). A vortex-like circulation is seen to be superimposed on the 
upward motion, with the shape and mean velocity distributions remaining 
similar with height. Miss Woodward has plotted vertical and horizontal 

t At present on leave a t  the Woods Hole Oceanographic Institution, Woods Hole, 
Massachusetts. 
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velocity distributions and also the paths of particles relative to the ‘thermals ’ 
(as the buoyant elements have been called). These show that some external 
fluid is incorporated by mixing into the front of the thermal, while the remainder 
enters from the rear. Saunders (1962) has taken streak photographs which 
allow one to trace streamlines relative to axes at  rest ; one of his photographs is 
reproduced in figure 1, plate 1. 

Since the first publication of this description of the thermal, it has often been 
remarked that the observed instantaneous distribution of velocity in and around 
the element is very close to that in the spherical vortex described by Hill (see 
Lamb 1932). Hill showed that by choosing a certain form for the distribution 
of vorticity inside a spherical region of fluid, a solution of the equations of 
motion can be obtained which represents a vortex moving with constant velocity 
and size through inviscid surroundings. The flow outside the sphere is the same 
as the potential flow round a solid sphere, and the velocity components are 
continuous at  the boundary. Levine (1959) has in fact based his theoretical 
model of a thermal on this idea, but he restricted his discussion to the case of a 
vortex of constant size, which is interchanging fluid with the environment in 
some unspecified way. 

So far, then, the spherical vortex model has not been combined explicitly 
with the increase in size which is observed experimentally in still surroundings. 
In  this paper we shall investigate to what extent the detailed experimental 
results can be explained in terms of an expunding spherical vortex. We shall 
first compare (in more detail than has been done previously) the observed 
instantaneous motion with that implied by Hill’s vortex, and then study the 
kinematics of the mean flow around and into a vortex whose size is increasing 
linearly with distance. 

A little more should perhaps be said first about some of the properties of the 
flow in a real fluid, to show that these can be adequately represented by the 
theoretical model. It is not immediately obvious how a description in terms of 
an inviscid fluid of constant density can be related to a motion which is in fact 
produced by buoyancy acting on a region of turbulent fluid. 

The condition for axisymmetric inviscid motion is that the quantity wly 
(where w is the azimuthal vorticity component and y is the distance from the 
axis) is conserved following a particle. Hill showed that this is zero outside the 
sphere and equal to 15U/2a2 inside, and so long as the radius a is constant, a 
steady solution with velocity U is possible in which the sum of the strengths of 
all the vortex filaments comprising the vortex (i.e. the circulation around it) 
is 5Uu. When fluid is crossing the boundary and both the size and the velocity 
are changing, the continued use of the model implies that some mechanism not 
considered in the inviscid solution must be producing a discontinuous increase 
of vorticity at  the edge, and a changing value inside the spherical region. 

Both these effects can be explained in terms of the turbulent nature of the 
interior flow. The sudden change of vorticity at  the boundary may be likened 
to that at  the edge of a turbulent jet, where there is a sharp boundary between 
rotational and irrotational fluid, and entrained fluid quickly comes to share the 
vorticity of the interior. The possibility of similar mean flow distributions at  
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all times is also easier to understand when we use the ideas of similarity and 
self-preservation developed for turbulent flows. These imply that the motion 
can be described in terms of the variation of the mean flow properties, U and a, 
with time, and certain non-dimensional distribution functions which depend 
only on the position relative to the expanding boundary. 

Now the dependence of quantities such as the circulation on the parameters 
U and a must on dimensional grounds be of the same form as it is in the steady 
inviscid model, so from this point of view the descriptions are equivalent. The 
existence of buoyant fluid, however, gives a mechanism which allows the changes 
in U and a to be predicted. For the thermal with constant total buoyancy, for 
example, i t  can be shown that the spread is linear with distance and that 
U cc a-l, so that in this case in fact the circulation (and the Reynolds number) 
remain constant. 

The dynamical reason for the existence of a velocity distribution close to the 
one appropriate to steady motion is of course a different and more difficult 
question which will not be considered here. The use of Hill’s solution amounts 
to the assumption that the distribution of w is little affected by the expansion 
and mixing, or that at  any instant the differences of wly from a constant value 
at any point in the sphere will be small. 

2. The field of motion relative to axes at rest 
The first comparison between the spherical vortex model and experiment 

may be made very simply, without the need to consider the expansion, by 
plotting standard results in slightly different forms from the usual ones. The basic 
assumption which will be made in following sections is that at  any instant the 
motion inside a spherical region is that described by Hill, while outside it is 
just the potential flow around a sphere. The streamlines for this combination, with 
respect to axes at  rest relative to the fluid at  infinity, are shown in figure 2.  
They may be compared with the streak picture of figure 1, which gives an 
approximate representation of the streamlines in the laboratory thermal when 
the exposure time is not too long. Note that the calculated streamlines near 
the stagnation point tend to be more elongated than those observed, suggesting 
that the laboratory thermal is more flattened-as is indeed suggested by its 
outline. Otherwise the two pictures are very similar, and show the same sym- 
metry of the motion at the front and rear. 

A more sensitive comparison of theory and experiment may be made by 
plotting the vertical and horizontal components of velocity (i.e. in the direction 
of motion and parallel to it), again with respect to axes at  rest. This has been 
done for Hill’s spherical vortex in figure 3. While the streamlines of figure 2 are 
smooth and therefore the velocities are continuous, the velocity gradients are 
not, because of the discontinuity in the vorticity distribution present in this 
model. This is in strong contrast to the corresponding experimental results, as 
interpreted by Miss Woodward in her figure 2, where smooth velocity contours 
are shown. It is difficult to judge from this comparison alone whether dis- 
continuous gradients may occur or not, since averaging over several particles 
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in a turbulent flow will always tend to produce a smoothing. The effect of these 
differences on other properties of the flow must be small, as our later calculations 
will show. 

FIGURE 2. Streamlines of the flow, relative to axes a t  rest, of the motion in and around 
Hill’s spherical vortex. Contours are plotted for one half of the symmetrical flow, in a 
plane through the axis and at  equally spaced values of the Stokes stream function. Com- 
pare with figure 1, plate 1. 

3. Motion relative to an expanding vortex 
The time-dependent nature of the flow we wish to study introduces complica- 

tions which are not often considered in classical hydrodynamics. For steady 
flows it has become customary to eliminate the time dependence and to calcu- 
late only the form of the streamlines. It is possible, however, to obtain extra 
information by leaving this time dependence in explicitly, and Morton (1913), 
for example, calculated detailed particle paths for several well-known flows. 
Darwin (1953) approached the problem more generally and showed how the 
‘drift’ of particles, i.e. the total distance moved during the passage of a solid 
body, is related to the virtual mass. 
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Of most direct interest to us is the work of Lighthill (1956), who carried out 
the corresponding calculations for a sphere of fixed size. In  addition to stream- 
lines, he plotted surfaces of constant ‘drift function’; which are the shapes into 
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FIGURE 3. The calculated velocity distribution in and around Hill’s spherical vortex. 
Contours of vertical velocity (solid lines) and horizontal velocity (dotted) are shown, for 
the right-hand side of the symmetrical flow. The values on the curves are multiples of the 
vertical velocity of the centre of the vortex. The numbers have been chosen so that when 
they are converted to multiples of the velocity of the cap (by multiplying by 0.8 for 
a = 4) they are the same as those used by Woodward (1959). 

which planes of fluid initially at  right angles to a uniform stream will be dis- 
torted as they pass over the sphere. Together, these two sets of curves show not 
only what happens to each particle of fluid, but when. In  particular, they reveal 
that initially plane surfaces become tightly wrapped round the front of the 
sphere, which suggests that if the sphere were expanding, these surfaces would 
be incorporated into the moving volume. 
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The previous calculations for a sphere of constant size may be extended as 
follows. Consider first the motion outside the sphere. The potential-flow solution 
in spherical polar co-ordinates, representing a flow with unit velocity past a 
sphere of fixed radius a, is 

v, = &/at = - (1 - u3/r3) cos 0, 

vo = r(clO/dt) = (1 +a3/2r3)sin8, 

where r is the radius vector and 0 is the angle measured from the direction of 
the approaching stream. We shall assume that the motion of a particle near an 
expanding sphere is instantaneously the same as it would be near a fixed sphere 
of the same size. An equivalent assumption is already implied in the usual 
treatments of potential flow round bodies of fixed size, when the motion at  all 
points of the fluid is then supposed to respond instantaneously to changes of 
velocity of the body. In  a co-ordinate system which is at rest relative to the 
centre of the sphere, the expansion of a moving sphere proportional to distance 
travelled is represented by 

a' = atu = at, 

where a is a constant, the tangent of the half angle of spread, and the velocity 
U is again taken as unity. Combining (1) and (2) we have therefore 

dr a3t3 a0 
- = COS0, 
at at r (3) 

for the motion of a fluid particle past an expanding sphere. 
It will be convenient to plot the paths of particles relative to the current 

radius of the sphere, or with respect to the sphere regarded as fixed in size. 
With the change of variable 

the equations (3) become 
p = r/at, (4) 

Note that even in the expanding case, the time dependence could be eliminated 
from these equations if we were interested only in the form of the relative 
streamlines and not the position of particles at  given times. The integration of 
this pair of equations may be started with any convenient set of initial condi- 
tions on p, 0 and t, and continued until p becomes less than unity, which it may 
do if the particle enters the sphere. 

A similar extension may be made to the equations for the interior motion in 
a spherical vortex. Hill's solution with U = 1 is 

v, = $( 1 - +/az) cos 0, 

vg = - $( 1 - 2r2/a2)sin0. 
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Making again the substitutions corresponding to the relative motion in an 
expanding co-ordinate system, a = at and p = r/a, these equations become g = ,{-ap+$(l-p2)cos8}, 1 

d8 3 sin8 
- - - - -{2+ 1). 
at 2 pat 

( 7 )  

When the integration of ( 5 )  shows that a particle has entered the spherical 
vortex, the motion for p < 1 may be followed using (7), with initial conditions 
provided by the final values obtained from the exterior calculation. This process 
of integration automatically insures that continuity is preserved across the 
boundary of the vortex. 

4. Numerical solutions for the relative motion 
In  principle, the equations for flow near an expanding vortex are hardly more 

complex than those tracing particle motions round a sphere of constant size. 
In practice, however, it  is no longer possible to obtain analytic solutions even 
for special ranges of the variables, and we have therefore used a high-speed 
computer to integrate ( 5 )  and (7) .  Most of the results have been obtained for 
a = 4, which is close to values observed in laboratory experiments, but later 
some of the changes introduced by using a different value of a will be considered. 

The main results of this paper are presented in figure 4. As discussed in the 
preceding section, the paths of various particles lying initially on a plane some 
distance ahead of the sphere and perpendicular to its direction of travel are 
plotted relative to the instantaneous outline of the sphere. The points marked 
are separated by equal intervals of t. It is seen that a typical particle lying 
close to the axis enters the front of the sphere, while particles further off the 
axis may enter from the rear, or eventually fail to enter. Another method of 
presenting the same results is shown on the left of this diagram; here we have 
joined points having constant t ,  so that again these lines represent the shapes 
into which previously plane surfaces are distorted by the mean motion around 
and inside the spherical vortex. Both these plots are immediately suggestive 
of the experimental results, but a detailed comparison will be deferred to a later 
section. 

To supplement the numerical solutions, it is helpful to set down several exact 
deductions from ( 5 )  and (7) .  The single 'stagnation point ' for the relative flow 
outside the sphere (i.e. the point which stays in the same relative position with 
respect to the sphere) is found by setting the right-hand sides of ( 5 )  equal to 
zero; the only solution for a = 4, p > 1 is 8 = n-, p = 1.11 approximately. 
Inside the spherical vortex there are three such points for a = &, one at 0 = 0, 
p = 0.92 on the central axis, and theothertwo a tp  = I /  J2 = 0.708,O = f. 764". 
These latter are of course the points about which the internal circulation is 
taking place relative to the expanding sphere. They are at  the same radius as 
the corresponding stagnation points for a spherical vortex of fixed size, but are 
moved forward slightly in the co-ordinate system used here, through a distance 
which depends on the angle of spread a. 
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I 
co-ordinate system in which the spherical boundary is fixed in size. The tangent of the 
half-angle of spread is CY = f. The right side of the diagram shows the paths of particles 
which started on a plane a t  right angles to the direction of motion. The points marked are 
separated by equal time intervals if the vortex has a constant forward velocity. The left 
side of the diagram shows the successive shapes into which a plane of fluid is distorted by 
the passage of the vortex. 

5. Distribution of the inflow 
Let us now look in more detail at the history of particles which enter the 

spherical vortex, In  the absence of the sphere, but using the expanding co- 
ordinate system, all particles would converge along straight lines to a ' virtua 
origin ' at 8 = n, p = I/a or p = 4 for the case plotted in figure 4. The transverse 
position of particles a t  large distances may conveniently be scaled in terms of 
the intercepts b cut off by these converging paths on the plane 8 = &r which 
passes through the centre of the sphere. Alternatively we can use the initial 
angle of approach to the virtual origin, p say, given by tanp = ab. 
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The angular distance 8 from the front of the spherical vortex to the point of 
entry of a particle into the sphere is shown as a function of ,4 in figure 5. Note 
that, for a = 2, particles out to just less than tanp  = ab = 0.275 enter the 
sphere. The volume of external fluid eventually incorporated is greater than 
would be judged by drawing the tangent cone to the sphere at a particular 
instant; the value of a corresponding to the tangent is also shown on figure 5. 
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FIGURE 5. The initial angle of approach of particles towards the virtual origin, plotted 
against their final positions of entry into an expanding vortex (as specified by the angular 
distances from the front). Results are shown for two half angles of spread, a = 4 and 
a = a, and the angles of the tangent cones are also marked. 

Another quantity which has been deduced from laboratory measurements is 
the proportion of external fluid which enters over the front of the thermal (from 
B = 0 to t3 = rt&r). I n  considering the corresponding calculation for an 
expanding spherical vortex, we must be careful to specify exactly what is 
meant. In  our model, the instantaneous inward flux of fluid is of course the 
same everywhere over the sphere, so that we can say immediately that 50% 
of the entering fluid comes in at  the front. It might perhaps be argued that it 
is possible to define the proportions in another way which depends on the 
relative volumes of the conical regions from which fluid is drawn over a long 
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time, but this is less realistic because of the different times at  which particles 
on different streamlines enter the sphere. 

One would expect that the results shown in figure 5 could depend on the 
angle a, so for comparison the computation of particle paths outside the sphere 
has been repeated for a = 3. The general form is similar to figure 4 and will not 
be given in detail, but it has been used to prepare the second curve on figure 5. 
With a = &, particles even further off the axis eventually enter the sphere; the 
rear stagnation point corresponds to tan@ = ab = 0.45 approximately. 

i : Total drift , 

. f .  

1.0 c 
0 

Sideways displacement (radii) 

FIGURE 6. Displacements of particles in a frictionless fluid, caused by the passage of n 
solid sphere. Also shown is the 'total drift function', or locus of the final displacements in 
the direction of motion of the sphere (which is upwards). 

If a is increased still further, the rear stagnation point disappears altogether. 
It may be deduced from equations ( 5 )  that this occurs for a > 0.47, rather 
larger than is relevant for the comparison with experiment we are attempting 
here. The result seems worth recording however; it  implies that, given long 
enough and a certain minimum angle of spread, all exterior particles will become 
incorporated in the expanding spherical vortex. 

6. Motions of particles relative to axes at rest 
So far the results of the computations on the expanding vortex have all been 

given relative to co-ordinates fixed in the spherical vortex and expanding with 
it. We shall now superpose the velocity of the vortex and plot the paths of 
particles relative to the fluid at  rest, and consider how these paths are affected 
by the expansion. 
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For a spherical vortex of constant size, or a solid sphere in a frictionless fluid, 
typical particle paths may be calculated by extending the results of Lighthill 
(1956). These are shown in figure 6; they are symmetrical looped curves, with 
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FIGURE 7. The displacement of fluid particles relative to axes at  rest, due to the passage 
of a spherical vortex whose radius is increasing linearly with distance. Distances are 
measured in units of the radius of the vortex as its centre passes through the plane where 
the particles are originally distributed. The numbers on the curves refer to the height of 
the centre when the particle has reached the marked position. Full lines : particles moving 
outside the vortex; dotted lines: inside. 

the particles moving first up and outwards, and then down and in again. There 
is a finite net displacement in the direction of motion of the sphere, and the 
locus of final positions, or the ‘total drift function’, is also plotted. 

The behaviour of particles near an expanding sphere is very different, as 
shown in figure 7. The initial positions have been chosen to lie on a plane at  
distances from the axis which are various fractions of the radius of the vortex 
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as its centre passes through this plane. The numbers on the curves represent 
the position of the sphere (in units of the standard radius from the virtual 
source) when the particles have reached the points marked. Particles near the 
axis move up and out before being incorporated into the sphere, and their paths 
inside the spherical vortex are continued as dotted lines. Further out, some 
downward motion occurs before a particle enters the spherical vortex from the 
rear, and particles which never enter the sphere move downwards before being 
drawn up into the wake of the vortex. 

It appears that there is a fundamental difference here from the calculation 
for a sphere of constant size, in that there is no position corresponding to the 
‘total drift ’ of a particle. That is, so long as the expanding sphere is moving, 
particles near the axis will still have a finite upward velocity. This may be 
demonstrated as follows. Using Lighthill’s notation, the ‘drift’ X is defined by 
X = t + x, where x is the relative displacement in the direction of motion, and 
the upward velocity is taken as unity. For particles near the axis and behind 
the vortex, 8 z n- and x z - r ,  so that the first of equations (3) may be written 

Thus if X is finite and t becomes large 

dX/dt = a3; (9) 

the upward particle velocity remains a finite fraction of the velocity of the 
vortex, except for a = 0, which corresponds to a sphere of constant size. To 
the same order of approximation, the particles will at large times be moving 
parallel to the direction of motion of the vortex. 

7. Discussion 
We shall now return to a comparison of the calculated particle motions with 

what has been found in laboratory experiments. To what extent can the mean 
motions we have derived account for the observed behaviour in a turbulent 
buoyant thermal ? 

A comparison of the stream functions and velocity components with respect 
to axes at  rest has already been carried out. We can now compare directly the 
relative streamlines and the distortion of initially plane surfaces shown in 
figure 4 with the corresponding results given by Woodward in her figures 4 and 5. 
The agreement is good, except that again there is the suggestion that the 
laboratory thermals are more nearly oblate spheroids than spheres. 

It is possible to go further and explain the existence of the thin layer of 
mixing near the front of the thermal, in terms of the mean flow pattern. In  
figure 4, the front stagnation point lies only a short distance inside the boundary 
of the moving spherical region, so fluid entering over the front will not penetrate 
far, but will be swept sideways round the outer layers of the cap. In  addition, 
of course, this fluid will be unstable with respect to the interior of the thermal, 
and enhanced turbulent mixing may occur near this layer. In  cases where the 
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buoyant fluid is confined to a ring which does not extend out to the cap, there 
is no instability at the front of the spherical volume moving with the vortex 
ring, and the flow can remain smooth, as previously observed by Turner (1957). 
Even in the turbulent case, however, the symmetry of streak pictures like 
figure 1 shows that the differences between the motion at the front and rear are 
not large, and that our interpretation depends greatly on the co-ordinate system 
in which we view the thermal. 

The addition of external fluid over a broad region at  the rear is also to be 
expected from figure 4. Here the density stratification produced by the mean 
motion is either stable or neutral; an overturning is not produced until the 
added fluid has moved up the centre towards the front of the thermal, so the 
density differences will not enhance the mixing at the rear. The existence of this 
general upflow in the middle of the thermal suggests that the buoyant fluid 
could be confined to only part of the moving region, and that the shape of the 
fluid moving with the vortex may be more nearly spherical than the outline of 
dye. Some flattening, however, is also apparent from the streamlines as we have 
already noted. 

The fraction of fluid added over the front of the spherical vortex, which is 
exactly 4 using our model, is a t  the bottom end of the range of values i-5 
suggested by Miss Woodward from her experiments. As she pointed out, 
however, these figures do depend on the variations of the position of the edge 
of thermals due to turbulent fluctuations, which may trap fluid closer to the 
front. 

It can now be stated with some confidence that the main features of the 
motion in and around a buoyant thermal can be explained very well using the 
expanding vortex model. The flow outside can be described closely by the 
potential flow around a solid sphere of the same size, and that inside by the 
distribution in Hill’s spherical vortex. Two qualifications to this statement 
must be made: experimental thermals are flattened slightly, and the mean 
velocity distributions so far measured do not show the discontinuity of gradient 
which is implied by the spherical vortex model. 

Apart from its special application, the picture which emerges from these 
calculations may be of more general interest, for it represents a case where an 
inviscid-flow solution should remain valid in real fluids. One is familiar with 
the use of potential-flow solutions in aerodynamics, where friction has to be 
considered only in a boundary layer near the body. In  the flow considered here, 
potential flow should remain a good approximation right up to the boundary 
of the spherical vortex, because not only is the surface moving, but any 
boundary layer formed is immediately incorporated into the sphere. Thus as 
far as the external motion is concerned, viscosity can be neglected, and the only 
resistance to motion of the spherical vortex arises because of the addition or 
displacement of external fluid which has to be accelerated from rest. 
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